Structure of a Sliding Clamp on DNA

نویسندگان

  • Roxana E. Georgescu
  • Seung-Sup Kim
  • Olga Yurieva
  • John Kuriyan
  • Xiang-Peng Kong
  • Mike O'Donnell
چکیده

The structure of the E. coli beta clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp. We demonstrate that these clamp-DNA interactions function in clamp loading, perhaps by inducing the ring to close around DNA. Clamp binding to template ssDNA may also serve to hold the clamp at a primed site after loading or during switching of multiple factors on the clamp. Remarkably, the DNA is highly tilted as it passes through the beta ring. The pronounced 22 degrees angle of DNA through beta may enable DNA to switch between multiple factors bound to a single clamp simply by alternating from one protomer of the ring to the other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Replication: How Does a Sliding Clamp Slide?

DNA sliding clamps are rings that tether certain enzymes to DNA. How clamp proteins slide on DNA has remained a mystery. A new crystal structure, together with molecular dynamics and NMR studies, has revealed how the human PCNA clamp slides on DNA.

متن کامل

Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculo...

متن کامل

Building a Replisome from Interacting Pieces Sliding Clamp Complexed to a Peptide from DNA Polymerase and a Polymerase Editing Complex

We have solved the crystal structures of the bacteriophage RB69 sliding clamp, its complex with a peptide essential for DNA polymerase interactions, and the DNA polymerase complexed with primer-template DNA. The editing complex structure shows a partially melted duplex DNA exiting from the exonuclease domain at an unexpected angle and significant changes in the protein structure. The clamp comp...

متن کامل

DNA Sliding Clamps: Just the Right Twist to Load onto DNA

Two recent papers illuminate a key step in DNA sliding clamp loading: one reveals the structure of the PCNA clamp wrapped around DNA--still open from being loaded--while the other finds that the clamp may assist this process by forming a right-handed helix upon opening.

متن کامل

MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA

To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex usin...

متن کامل

Protein trafficking on sliding clamps.

The sliding clamps of chromosomal replicases are acted upon by both the clamp loader and DNA polymerase. Several other proteins and polymerases also interact with the clamp. These proteins bind the clamp at the same spot and use it in sequential fashion. First the clamp loader must bind the clamp in order to load it onto DNA, but directly thereafter the clamp loader must clear away from the cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 132  شماره 

صفحات  -

تاریخ انتشار 2008